System of viscous conservation laws:

$$
u_{t}+f(u)_{x}=\mu u_{x x}
$$

## Profile:

$$
\begin{aligned}
& u^{*}(x, t)=\phi(x \Leftrightarrow s t) \\
& \mu \phi^{\prime}=h(\phi)=f(\phi) \Leftrightarrow s \phi \Leftrightarrow q, \quad \phi( \pm \infty)=u_{ \pm}
\end{aligned}
$$

Integrated perturbation:

$$
U(x \Leftrightarrow s t, t)=\int_{-\infty}^{x} u(\xi, t) \Leftrightarrow \phi(\xi \Leftrightarrow s t) d \xi
$$

Integrated equation:

$$
\begin{aligned}
& U_{t}+h^{\prime}(\phi) U_{x} \Leftrightarrow \mu U_{x x}=F\left(\phi, U_{x}\right) \\
& \text { where } h^{\prime}=f^{\prime} \Leftrightarrow s I
\end{aligned}
$$

Main task: Proof

$$
\|U(\cdot, T)\|_{L^{2}}^{2}+\int_{0}^{T}\left\|U_{x}\right\|_{L^{2}}^{2} d t \leq C\|U(\cdot, 0)\|_{L^{2}}^{2}
$$

$(\sim$ stability) .

# Stability of profiles of general small-amplitude Laxian shock waves (via Weighted Energy Estimates) 

## 1. Viscous Shock Profiles

Hyperbolic conservation law

$$
\begin{align*}
& u_{t}+f(u)_{x}=\mu u_{x x} \quad x \in \mathbb{R}, u \in \mathbb{R}^{n}  \tag{1}\\
& u( \pm \infty, t)=u_{ \pm}
\end{align*}
$$

(i.e. $f^{\prime}(u)$ RR-diagonizable $\forall u$ ).

Consider a traveling wave solution

$$
u^{*}(x, t)=\phi(x \Leftrightarrow s t)
$$

i.e., $\phi$ solves
$\mu \phi^{\prime}=h(\phi)=f(\phi) \Leftrightarrow s \phi \Leftrightarrow q \quad, \quad \phi( \pm \infty)=u_{ \pm}$,
where $u_{-}, u_{+}, s, q$ satisfy

$$
f\left(u_{-}\right) \Leftrightarrow s u_{-}=f\left(u_{+}\right) \Leftrightarrow s u_{+}=q
$$

## Definition

$u^{*}(x, t)=\phi(x \Leftrightarrow s t)$ asymptotically stable
$: \Leftrightarrow \exists\left(B,\|\cdot\|_{B}\right), \beta>0: \forall u_{0} \in B,\left\|u_{0}\right\|_{B}<\beta$ :
Solution $u$ of (1) with perturbed data
(S) $u(\cdot, 0)=\phi+u_{0}$ exists for all $t>0$ and has $\lim _{t \rightarrow \infty} \sup _{x}|u(x, t) \Leftrightarrow \phi(x \Leftrightarrow s t)|=0$

## Theorem (Goodman, 1985)

- $\lambda$ simple eigenvalue of $f^{\prime}$
- "convex": $\mathbb{R} \cdot r=\operatorname{ker}\left(f^{\prime} \Leftrightarrow \lambda I\right) \Rightarrow r \cdot \nabla \lambda \neq 0$
- $\phi$ associated with $\lambda: \lambda\left(u_{-}\right)>s>\lambda\left(u_{+}\right)$
- small amplitude: $\left|u_{+} \Leftrightarrow u_{-}\right| \ll 1$
$\Rightarrow(\mathrm{S})$ for all $u_{0} \in \mathrm{~L}^{1}(\mathbb{R})$ with $\int_{-\infty}^{\infty} u_{0} d x=0$ and $\left\|U_{0}\right\|_{H^{2}}<\beta\left(U_{0}(x):=\int_{-\infty}^{x} u_{0}(y) d y\right)$


## Goal:

## Theorem 1

Same without "convex"

## 2. The Integrated Equation

Subtract the solution $u^{*}(x, t)=\phi(x \Leftrightarrow s t)$ from a solution $u$ (with perturbed initial data $\left.\phi+\left(U_{0}\right)_{x}\right)$ :

$$
\left(u \Leftrightarrow u^{*}\right)_{t}+\left(f(u) \Leftrightarrow f\left(u^{*}\right)\right)_{x}=\mu\left(u \Leftrightarrow u^{*}\right)_{x x}
$$

Integrated perturbation:

$$
U(x \Leftrightarrow s t, t)=\int_{-\infty}^{x} u(x, t) \Leftrightarrow \phi(x \Leftrightarrow s t) d x
$$

Integrate and change to moving coordinates ( $x \Leftrightarrow$ $s t, t)$ ):

$$
\begin{aligned}
& \Leftrightarrow s U_{x}+U_{t}+f\left(\phi+U_{x}\right) \Leftrightarrow f(\phi)=\mu U_{x x} \\
& U(x, 0)=U_{0}(x)=\int_{-\infty}^{x} u(x, 0) \Leftrightarrow \phi(x) d x
\end{aligned}
$$

Using Taylor expansion

$$
f\left(\phi+U_{x}\right) \Leftrightarrow f(\phi)=f^{\prime}(\phi) U_{x} \Leftrightarrow F\left(\phi, U_{x}\right)
$$

## Integrated Equation

$$
\begin{align*}
& U_{t}+h^{\prime}(\phi) U_{x} \Leftrightarrow \mu U_{x x}=F\left(\phi, U_{x}\right)  \tag{2}\\
& U(\cdot, 0)=U_{0}=\int_{-\infty}^{x} u(x, 0) \Leftrightarrow \phi(x) d x
\end{align*}
$$

where $h=f \Leftrightarrow$ sid.

## 3. Example: Scalar case, convex flux

Apply a standard energy estimate to the integrated equation

$$
U_{t}+h^{\prime}(\phi) U_{x} \Leftrightarrow \mu U_{x x}=F\left(\phi, U_{x}\right)
$$

Multiply by $U$ and integrate $\int_{-\infty}^{\infty} d x, \int_{0}^{T} d t$ :

$$
\begin{aligned}
& \|U(\cdot, T)\|_{L^{2}}^{2}+\int_{0}^{T} \int_{-\infty}^{\infty} \Leftrightarrow\left(h^{\prime}(\phi)\right)_{x} U^{2} d x d t \\
& +\int_{0}^{T}\left\|U_{x}\right\|_{L^{2}}^{2} d t \leq C\|U(\cdot, 0)\|_{L^{2}}^{2}
\end{aligned}
$$

proceeding in a similar (but less restrictive) way with $U_{x}$ and $U_{x x}$ we have

## Proposition 1

If $n=1$ (scalar equation) and $\left(h^{\prime}(\phi)\right)_{x}<0$ then

$$
\|U(\cdot, T)\|_{H^{2,2}}^{2}+\int_{0}^{T}\left\|U_{x}\right\|_{H^{2,2}}^{2} d t \leq C\|U(\cdot, 0)\|_{H^{2,2}}^{2}
$$

This a-priori estimate ensures the existence of $U$ for all times and gives a decay for $U_{x}$ such that Theorem 1 holds.

## 4. Scalar case, non-convex flux <br> (Matsumura \& Nishihara 1994):

Multiply by $U \cdot w, w=w(x)$ and integrate $\int_{-\infty}^{\infty} d x$ :

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial}{\partial t} \int_{-\infty}^{\infty}\left(w|U|^{2}\right) d x+\int_{-\infty}^{\infty} U w h^{\prime}(\phi) U_{x}+\mu U w_{x} U: \\
& +\mu w\left(U_{x}\right)^{2} \Leftrightarrow U w F\left(\phi, U_{x}\right) d x=0
\end{aligned}
$$

Find positive weight $w$ such that:

$$
\Leftrightarrow \frac{1}{2}\left(w h^{\prime}(\phi)+\mu w_{x}\right)_{x}>0
$$

Ansatz $w(x)=\tilde{w}(\phi(x))$ :

$$
\begin{aligned}
& \Leftrightarrow \frac{1}{2}\left(w h^{\prime}(\phi)+\mu w_{x}\right)_{x} \\
= & \Leftrightarrow \frac{1}{2}\left(\tilde{w}(\phi) h^{\prime}(\phi)+\mu \tilde{w}^{\prime}(\phi) \phi_{x}\right)_{x} \\
= & \Leftrightarrow \frac{1}{2}\left((\tilde{w} h)^{\prime}(\phi)\right)_{x}=\Leftrightarrow \frac{1}{2}(\tilde{w} h)^{\prime \prime}(\phi) \phi_{x}
\end{aligned}
$$

## Choose

$$
\tilde{w}(u)=\Leftrightarrow \frac{\left(u \Leftrightarrow u_{+}\right)\left(u \Leftrightarrow u_{-}\right)}{h} \cdot \operatorname{sign} \phi_{x}>0
$$

to obtain

$$
\Leftrightarrow_{2}^{1}\left(w h^{\prime}(\phi)+\mu w_{x}\right)_{x}=\left|\phi_{x}\right|
$$

## 5. System case, non-convex mode

Diagonalize (Goodman 1985): Matrix function

$$
L(x)=\widetilde{L}(\phi(x)), R(x)=\tilde{R}(\phi(x))
$$

such that $L R \equiv I$ and:

$$
L\left(h^{\prime}(\phi)\right) R=\wedge=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where

$$
\lambda_{p}=\lambda \Leftrightarrow s, \quad \lambda_{i}<0<\lambda_{j}(i<p<j)
$$

Substitute $U=: R V$ in (2), multiply by $V^{T} W L$, integrate $\int_{-\infty}^{\infty} d x \leadsto$

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \frac{1}{2} \frac{\partial}{\partial t}\left(V^{T} W V\right)+V^{T} W \wedge V_{x}+V^{T} W \wedge L R_{x} V \\
+\mu\left(V^{T} W L\right)_{x}(R V)_{x} \Leftrightarrow V^{T} W L F\left(\phi,(R V)_{x}\right) d x \\
=0
\end{array}
$$

## Choose

$$
W=\operatorname{diag}(1, \ldots, 1, w, 1, \ldots, 1)
$$

Group terms:
(A1) $\frac{1}{2} \frac{\partial}{\partial t}\left(V^{T} W V\right)$
(A2) $\left(w \lambda_{p}+\mu w_{x}\right) V_{p}\left(V_{p}\right)_{x}$
(A3) $\sum_{k \neq p}\left(\Leftrightarrow \frac{1}{2}\left(\lambda_{k}\right)_{x}+l_{k}\left(r_{k}\right)_{x} \lambda_{k}\right)\left(V_{k}\right)^{2}$
(A4) $\mu w\left(\left(V_{p}\right)_{x}\right)^{2}+\mu \sum_{k \neq p}\left(\left(V_{k}\right)_{x}\right)^{2}$
$(\mathrm{B} 1) \sum_{j \neq p}\left(w \lambda_{p}+\mu w_{x}\right) l_{p}\left(r_{j}\right)_{x} V_{p} V_{j}$
(B2) $\sum_{i \neq p, i \neq j} \lambda_{i} l_{i}\left(r_{j}\right)_{x} V_{i} V_{j}$
(B3) $\mu V^{T} W L_{x} R V_{x}+\mu V_{x}^{T} W L R_{x} V$
(B4) $\mu V^{T} W L_{x} R_{x} V$
(B5) $\Leftrightarrow V^{T} W L F\left(\phi,(R V)_{x}\right)$

## Remarks (on the diagonalization):

$$
\text { 1. }\left|L_{x}\right|,\left|R_{x}\right| \leq O(1)\left|\phi_{x}\right| \leq O(1)\left|u_{+} \Leftrightarrow u_{-}\right|
$$

2. If $l_{k}, r_{k}$ are left and right eigenvectors of $h^{\prime}$ $\left(l_{i} r_{j}=\delta_{i j}\right)$, so are $\frac{1}{\alpha_{k}} l_{k}$ and $\alpha_{k} r_{k}$, i.e. there are $n$ degrees of freedom in our choice of $L$ and $R$.

For $k \neq p$, use $\alpha_{k}$ to achieve positivity in the $V_{k^{-}}$ component:

$$
(\mathrm{A} 3)=(\underbrace{\Leftrightarrow \frac{1}{2}\left(\lambda_{k}\right)_{x}}_{|\cdot| \leq C\left|\phi_{x}\right|}+\underbrace{\frac{\left(\alpha_{k}\right)_{x}}{\alpha_{k}} \lambda_{k}}_{\geq 2 C\left|\phi_{x}\right|})\left(V_{k}\right)^{2}
$$

by choice of $\alpha_{k}$ (as $\lambda_{k}$ uniformly away from 0)

Not so for $k=p$ (as $\lambda_{p}$ crosses 0 along $\left.\phi\right)$.

For $k=p$, use $w$.

## Lemma

$\epsilon:=\left|u_{-} \Leftrightarrow u_{+}\right| \ll 1$ then
$\exists w: \mathbb{R} \rightarrow \mathbb{R}$ with $\inf _{x} w(x), \inf _{x}(1 / w(x))>0(\sim$ $\mathrm{L}_{2}$-norm in (A1), (A4) and estimate for (B5)) and

$$
\begin{aligned}
& \Leftrightarrow \frac{1}{2}\left(w \lambda_{p}+\mu w_{x}\right)_{x}=\left|\phi_{x}\right| \\
&(\leadsto \text { positivity of }(\mathrm{A} 2)) \\
&\left|w \lambda_{p}+\mu w_{x}\right| \leq 4\left|u_{+} \Leftrightarrow u_{-}\right| \\
&(\sim \text { estimate for }(\mathrm{B} 1)) \\
&\left|\mu\left(w \phi_{x}\right)_{x}\right|=\left|(w h(\phi))_{x}\right| \leq 4\left|u_{+} \Leftrightarrow u_{-}\right| \cdot\left|\phi_{x}\right| \\
&(\leadsto \text { estimate for (B3)) } \\
&\left|\mu w \phi_{x}\right|=|w h(\phi)| \leq 8\left|u_{+} \Leftrightarrow u_{-}\right|^{2} \\
&(\leadsto \text { estimate for }(\mathrm{B} 4))
\end{aligned}
$$

## Proof of Lemma

Analyze the differential equation

$$
\mu w_{x}+w \lambda_{p}=\int_{x_{0}}^{x}\left|\phi_{x}\right| d \xi \quad, \quad w(0)=w_{0}
$$

and choose the parameters $x_{0}, w_{0}$ appropriately.

## Proof of Theorem

Apply Lemma and estimate (B1) to (B5)

