
System of viscous conservation laws:

ut+ f(u)x = �uxx

Profile:

u�(x; t) = �(x � st)

��0 = h(�) = f(�) � s�� q, �(�1) = u�

Integrated perturbation:

U(x� st; t) =

Z x

�1
u(�; t)� �(� � st) d�

Integrated equation:

Ut+ h0(�)Ux � �Uxx = F(�; Ux)

where h0 = f 0 � sI

Main task: Proof
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(; stability).



Stability of profiles of general
small-amplitude Laxian shock waves

(via Weighted Energy Estimates)

1. Viscous Shock Profiles

Hyperbolic conservation law

ut+ f(u)x = �uxx x 2 IR; u 2 IRn (1)

u(�1; t) = u�

(i.e. f 0(u) IR-diagonizable 8u).

Consider a traveling wave solution

u�(x; t) = �(x� st)

i.e., � solves

��0 = h(�) = f(�)� s�� q , �(�1) = u� ,

where u�, u+, s, q satisfy

f(u�)� su� = f(u+)� su+ = q ,



Definition
u�(x; t) = �(x� st) asymptotically stable
:, 9 (B; jj � jjB), � > 0: 8 u0 2 B, jju0jjB < �:

Solution u of (1) with perturbed data
(S) u(�; 0) = �+ u0 exists for all t > 0 and has

lim
t!1

sup
x
ju(x; t)� �(x� st)j = 0

Theorem (Goodman, 1985)
� � simple eigenvalue of f 0

� “convex”: IR � r = ker(f 0 � �I)) r � r� 6= 0

� � associated with �: �(u�) > s > �(u+)

� small amplitude: ju+ � u�j << 1

) (S) for all u0 2 L1(IR) with
R1
�1 u0 dx = 0

and jjU0jjH2 < � (U0(x) :=
R x
�1 u0(y)dy)

Goal:

Theorem 1
Same without “convex”



2. The Integrated Equation

Subtract the solution u�(x; t) = �(x � st) from a
solution u (with perturbed initial data �+ (U0)x):

(u� u�)t+ (f(u)� f(u�))x = �(u� u�)xx

Integrated perturbation:

U(x � st; t) =

Z x

�1
u(x; t)� �(x� st) dx

Integrate and change to moving coordinates (x �

st; t)):

�sUx+ Ut+ f(�+ Ux)� f(�) = �Uxx

U(x;0) = U0(x) =

Z x

�1
u(x; 0)� �(x) dx

Using Taylor expansion

f(�+ Ux)� f(�) = f 0(�)Ux � F(�; Ux)

Integrated Equation

Ut+ h0(�)Ux � �Uxx = F(�; Ux) (2)

U(�; 0) = U0 =

Z x

�1
u(x;0)� �(x) dx

where h= f � sid.



3. Example: Scalar case, convex flux

Apply a standard energy estimate to the integrated
equation

Ut + h0(�)Ux � �Uxx = F(�; Ux)

Multiply by U and integrate
R1
�1 dx,

R T
0
dt:
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proceeding in a similar (but less restrictive) way with
Ux and Uxx we have

Proposition 1

If n = 1 (scalar equation) and (h0(�))x < 0 then
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H2;2 dt � CjjU(�; 0)jj2
H2;2

This a-priori estimate ensures the existence of U for
all times and gives a decay for Ux such that Theo-
rem 1 holds.



4. Scalar case, non-convex flux
(Matsumura & Nishihara 1994):

Multiply by U � w, w = w(x) and integrate
R1
�1 dx:
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@

@t

Z 1

�1
(wjU j2) dx+

Z 1

�1
Uwh0(�)Ux + �UwxUx

+�w(Ux)
2
� UwF(�; Ux) dx = 0

Find positive weight w such that:

�
1

2

�
wh0(�) + �wx

�
x
> 0

Ansatz w(x) = ~w(�(x)):

�
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�
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�
x
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�
~w(�)h0(�) + �~w0(�)�x

�
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1
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�
( ~wh)0(�)

�
x
= �

1

2
( ~wh)00(�)�x

Choose

~w(u) = �
(u� u+)(u� u�)

h
� sign�x > 0

to obtain

�
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�
wh0(�) + �wx

�
x
= j�xj



5. System case, non-convex mode

Diagonalize (Goodman 1985): Matrix function

L(x) = ~L(�(x)), R(x) = ~R(�(x))

such that LR � I and:

L(h0(�))R = � = diag(�1; : : : ; �n)

where

�p = �� s , �i < 0 < �j (i < p < j)

Substitute U =: RV in (2), multiply by V TWL, in-
tegrate

R1
�1 dx ;

1Z
�1

1

2

@

@t
(V TWV ) + V TW�Vx+ V TW�LRxV

+�(V TWL)x(RV )x � V TWLF(�; (RV )x) dx

= 0



Choose

W = diag(1; : : : ;1; w;1; : : : ;1)

Group terms:

(A1) 1
2

@
@t
(V TWV )

(A2) (w�p+ �wx)Vp(Vp)x

(A3)
P
k 6=p(�

1

2
(�k)x+ lk(rk)x�k)(Vk)

2

(A4) �w((Vp)x)2+ �
P
k 6=p((Vk)x)

2

(B1)
P
j 6=p(w�p+ �wx)lp(rj)xVpVj

(B2)
P
i6=p;i6=j �ili(rj)xViVj

(B3) �V TWLxRVx+ �V T
x WLRxV

(B4) �V TWLxRxV

(B5) �V TWLF(�; (RV )x)



Remarks (on the diagonalization):

1. jLxj, jRxj � O(1)j�xj � O(1)ju+ � u�j.

2. If lk, rk are left and right eigenvectors of h0

(lirj = �ij), so are 1

�k
lk and �krk, i.e. there are

n degrees of freedom in our choice of L and R.

For k 6= p, use �k to achieve positivity in the Vk-
component:

(A3) = (�
1

2
(�k)x| {z }

j�j�Cj�xj

+
(�k)x

�k
�k| {z }

� 2Cj�xj

by choice of �k

(as �k uniformly
away from 0)

)(Vk)
2

Not so for k = p (as �p crosses 0 along �).

For k = p, use w.



Lemma
� := ju� � u+j << 1 then
9 w : IR ! IR with inf

x
w(x), inf

x
(1=w(x)) > 0 (;

L2-norm in (A1), (A4) and estimate for (B5)) and

�
1

2
(w�p + �wx)x = j�xj

(; positivity of (A2))

jw�p + �wxj � 4ju+ � u�j

(; estimate for (B1))

j�(w�x)xj = j(wh(�))xj � 4ju+ � u�j � j�xj

(; estimate for (B3))

j�w�xj = jwh(�)j � 8ju+ � u�j
2

(; estimate for (B4))

Proof of Lemma
Analyze the differential equation

�wx+ w�p =

xZ
x0

j�xjd� , w(0) = w0

and choose the parameters x0, w0 appropriately.

Proof of Theorem
Apply Lemma and estimate (B1) to (B5)


