Time-asymptotic stability of shock profiles in the presence of diffusion waves

1. Viscous Shock Profiles

Hyperbolic conservation law

$$
\begin{align*}
& u_{t}+f(u)_{x}=\mu u_{x x} \quad x \in \mathbb{R}, u \in \mathbb{R}^{n} \tag{1}\\
& u(\pm \infty)=u_{ \pm}
\end{align*}
$$

(i.e. f^{\prime} has only real eigenvalues).

Consider a traveling wave solution (profile of a Laxian shock wave)

$$
u(x, t)=\phi(x-s t)
$$

associated with the simple eigenvalue λ of f^{\prime}, i.e., ϕ solves

$$
\begin{aligned}
& \mu \phi^{\prime}=h(\phi)=f(\phi)-s \phi-q \\
& \phi(\pm \infty)=u_{ \pm}
\end{aligned}
$$

where u_{-}, u_{+}, s, q satisfy

$$
\begin{aligned}
& f\left(u_{-}\right)-s u_{-}=f\left(u_{+}\right)-s u_{+}=q \\
& \lambda\left(u_{-}\right)>s>\lambda\left(u_{+}\right)
\end{aligned}
$$

Goal:

Theorem 1

There is a positive constant ϵ_{0} such that if u_{-}, u_{+} satisfy $\left|u_{ \pm}-u_{*}\right|<\epsilon_{0}$, then there exists $\beta_{0}>0$ (depending on f, u_{-}, u_{+}and μ) such that whenever the perturbation $u_{0}-\phi \in \mathrm{H}^{1}(\mathbb{R})$ satisfies

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|u_{0}(x)-\phi\left(x-\delta_{0}\right)\right| d x \\
& +\int_{-\infty}^{\infty}\left(1+\left(x-\delta_{0}\right)^{2}\right)\left|u_{0}(x)-\phi\left(x-\delta_{0}\right)\right|^{2} d x \leq \beta_{0}
\end{aligned}
$$

for some $\delta_{0} \in \mathbb{R}$, then the solution $u(x, t)$ to (1) with data $u(\cdot, 0)=u_{0}$ exists for all times $t>0$ and has

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in \mathbb{R}}|u(x, t)-\phi(x-s t-\delta)|=0 \tag{2}
\end{equation*}
$$

with a uniquely determined $\delta \in \mathbb{R}$.

Note:

- No convexity assumption.
- Non-zero mass perturbations.

Sketch of proof

1. Diagonalization

Change to moving coordinates $x \rightarrow x-s t$:

$$
u_{t}+(h(u))_{x}=\mu u_{x x}
$$

where $h^{\prime}=f^{\prime}-s \mathrm{I}$.
$\exists L=\left(l_{i}\right), R=\left(r_{j}\right)$ matrix valued functions such that $L(u) h^{\prime}(u) R(u)=\wedge(u)=\operatorname{diag}(\underbrace{\lambda_{1}, \ldots,}_{<0}, \lambda_{p}, \underbrace{\ldots, \lambda_{n}}_{>0})$
$\lambda_{p}\left(u_{-}\right)>0>\lambda_{p}\left(u_{+}\right)$

2. Decomposition of mass

Let $\delta, \theta_{i, \mathrm{O}}(1 \leq i \leq n, i \neq p)$ be defined by
"mass of perturbation"

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} u_{0}(x)-\phi(x) d x \\
& =: \delta\left(u_{+}-u_{-}\right)+\sum_{i \neq p} \theta_{i, 0} r_{i}\left(u_{i, 0}\right)
\end{aligned}
$$

where $u_{i, 0}:=u_{\text {sign }(i-p)} \in\left\{u_{-}, u_{+}\right\}$.

Shock profile (viewed from a side).

Perturbation with non-zero mass...

Shock profile (viewed from another side)

Perturbation with non-zero mass...

...evolves like a diffusion wave:

3. Define decoupled diffusion wave θ by

$$
\begin{aligned}
\theta & :=\sum_{i \neq p} \theta_{i} r_{i}\left(u_{i, 0}\right) \\
\theta_{i}(x, t) & =\frac{\theta_{i, 0}}{\sqrt{1+t}} v_{i}\left(\frac{\left(x-x_{0}\right)-\lambda_{i}\left(u_{i_{0}}\right)(1+t)}{2 \sqrt{1+t}}\right)
\end{aligned}
$$

as solution of

$$
\begin{array}{r}
\theta_{i, t}+\left(\lambda_{i}\left(u_{i_{0}}\right) \theta_{i}+\frac{1}{2} \nabla \lambda_{i}\left(u_{i_{0}}\right) \cdot r_{i}\left(u_{i, 0}\right) \theta_{i}^{2}\right)_{x} \\
-\mu \theta_{i, x x}=0 \\
\int_{-\infty}^{\infty} \theta_{i}(x, t) d x=\theta_{i, 0}
\end{array}
$$

The solution of this equation is known explicitly! It decays as $\frac{O(1)}{\sqrt{1+t}}$.
4. Define the coupled linear diffusion wave η by

$$
\begin{aligned}
\eta_{t}+\left(h^{\prime}(\phi) \eta\right)_{x}-\mu \eta_{x x} & =E_{1, x}+E_{2, x} \\
\eta(x, 0) & \equiv 0
\end{aligned}
$$

where E_{1} is a $\theta-\theta$ coupling term and E_{2} is a $\theta-\eta$ coupling term (both bilinear).

5. Decompose solution as

$$
u=\phi(\cdot-\delta)+\theta+\eta+w
$$

i.e.

$$
w:=u-(\phi(\cdot-\delta)+\theta+\eta)
$$

To do:

- Pointwise estimate for θ.
(Easy: $|\theta(\cdot, t)| \leq \frac{O(1)}{\sqrt{1+t}}$ since decoupled diffusion wave is known explicitly).
- Pointwise estimate for η.
(Will look like $|\eta(\cdot, t)| \leq \frac{\log (1+t)}{\sqrt{1+t}}$)
- Global existence for w and

$$
\sup _{x}|w(x, t)| \rightarrow 0(t \rightarrow \infty)
$$

Implies:

Global existence of u and

$$
\sup _{x}|u-\phi(\cdot-\delta)| \rightarrow 0(t \rightarrow \infty)
$$

[No decay rate, because energy method is used for w].

6. Pointwise estimate for η - sketch of proof:

$$
\begin{aligned}
\eta_{t}+\left(h^{\prime}(\phi) \eta\right)_{x}-\mu \eta_{x x} & =E_{1, x}+E_{2, x} \\
\eta(x, 0) & \equiv 0
\end{aligned}
$$

a) Integrate and diagonalize:

$$
d(x, t):=L(\phi) \int_{-\infty}^{x} \eta(\xi, t) d x
$$

$$
d_{t}+\wedge(\phi) d_{x}-\mu d_{x x}=L E_{1}+L E_{2}-\wedge L R_{x} d
$$

$$
-2 \mu L R_{x} d_{x}+\mu L R_{x x} d
$$

Intermediate goal: $\left|d\left(x^{\prime}, T\right)\right| \leq \frac{1+\log (1+T)}{(1+T)^{1 / 2}}$
b) Define (approximate) Green's functions:

$$
\begin{array}{r}
-\psi_{i, t}-\left(\lambda_{i} \psi_{i}\right)_{x}-\mu \psi_{i, x x}=0 \\
\psi_{i}\left(x^{\prime}, T\right)=\delta\left(x^{\prime}-x\right)
\end{array}
$$

(dual wave). Leads to

$$
\begin{aligned}
d_{i}\left(x^{\prime}, T\right)=\int_{0}^{T} \int_{-\infty}^{\infty} & \psi_{i}\left[L E_{1}+L E_{2}-\wedge L R_{x} d\right. \\
& \left.+2 \mu L R_{x} d_{x}+\mu L R_{x x} d\right]_{i} d x d t
\end{aligned}
$$

Example:

How to estimate

$$
\int_{0}^{T} \int_{-\infty}^{\infty}\left|\psi_{i}(x, t)\right|\left|\theta_{k}(x, t)\right|^{2} d x d t \quad(i \neq k)
$$

We need:

- The dual wave ψ_{i} decays backward in time.
- The dual wave ψ_{i} is localized (i.e. small outside a certain region).
- The diffusion wave decays and is localized

Thus we can focus on the estimate of

$$
\int_{\tau_{1}}^{\tau_{2}} \int_{-\infty}^{\infty}\left|\psi_{i}(x, t)\right|\left|\theta_{k}(x, t)\right|^{2} d x d t \quad(i \neq k)
$$

where "interaction-region" $\subset \mathbb{R} \times\left[\tau_{1}, \tau_{2}\right]$.
a) In the case of "early" interaction ($\tau_{2} \leq \frac{T}{2}$) use the backward decay of ψ_{i} :

$$
\ldots \leq\left\|\psi_{i}\left(\cdot, \tau_{2}\right)\right\|_{\mathrm{L}_{\infty}} \int_{\tau_{1}}^{\tau_{2}}\left\|\theta_{k}^{2}(x, t)\right\|_{\mathrm{L}_{1}} d t
$$

b) In the case of "late" interaction ($\tau_{1} \geq \frac{T}{2}$) use the decay of θ_{k}

$$
\ldots \leq\left\|\theta_{k}^{2}\left(\cdot, \tau_{1}\right)\right\|_{\mathrm{L}_{\infty}} \int_{\tau_{1}}^{\tau_{2}}\left\|\psi_{i}(\cdot, t)\right\|_{\mathrm{L}_{1}} d t
$$

and obtain

$$
\ldots \leq \frac{\bigcirc(1)}{(1+T)^{1 / 2}} \log (1+T)
$$

Example:

How to estimate

$$
\int_{0}^{T} \int_{-\infty}^{\infty}\left|\psi_{i}(x, t)\right|\left|\phi_{x}(x)\right|^{2}|d(x, t)| d x d t
$$

Let $T_{1} \leq T \leq T_{1}+1$. Because of

$$
\begin{aligned}
& \int_{0}^{T} \int_{-\infty}^{\infty} \ldots d x d t \\
& \leq \int_{0}^{T_{1}} \int_{-\infty}^{\infty} \ldots d x d t+\epsilon_{0} \sup _{T_{1} \leq t \leq T}\|d(\cdot, t)\|
\end{aligned}
$$

we can focus on the integral over $\left[0, T_{1}\right]$, where we use the induction assumption

$$
\|d(\cdot, t)\|_{\mathrm{L}_{\infty}} \leq \frac{1+\log (1+t)}{\sqrt{1+t}} \quad \forall 0<t \leq T_{1}
$$

We need:

- The dual wave ψ_{i} decays backward in time.
- The dual wave ψ_{i} is localized (i.e. small outside a certain region.
- ϕ_{x} is small outside a certain region.

Thus we can focus on the estimate of

$$
\iint_{\substack{\text { interaction } \\ \text { region }}}\left|\psi_{i}(x, t)\right|\left|\phi_{x}(x)\right|^{2}|d(x, t)| d x d t
$$

where we have: "interaction-region" $\subset \mathbb{R} \times\left[\tau_{1}, \tau_{2}\right]$.
a) In the case of "early" interaction ($\tau_{2} \leq \frac{T}{2}$) use

$$
\leq K\left\|\psi_{i}\left(\cdot, \tau_{2}\right)\right\|_{\mathrm{L}_{\infty}}\left\|\phi_{x}\right\|_{\mathrm{L}_{1}}
$$

and the (backward in time) decay of ψ_{i}.
b) In the case of "late" interaction ($\tau_{1} \geq \frac{T}{2}$) use

$$
\leq\left\|d\left(\cdot, \tau_{1}\right)\right\|_{\mathrm{L}_{\infty}} \int_{-\infty}^{\infty} \int_{\tau_{1}}^{\tau_{2}}\left|\psi_{i}(x, t)\right| d t\left|\phi_{x}\right|^{2} d x
$$

and the induction assumption on d. It remains to show:

Lemma (vertical estimate)

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\tau_{2}}\left|\psi_{i}(x, t)\right| d t\left|\phi_{x}\right|^{2} d x \leq K \epsilon_{0}
$$

It is non-trivial that this lemma holds in the non-convex case.

