A recursive formula for the Kurtosis of an approximation to the distribution of share prices

Christian P. Fries

August 2001

Working Paper

Appendix: A recursive formula for the Kurtosis of an approximation to the distribution of share prices

Introduction

Given the recursive approximation to the distribution of share prices (see [1, 2]) we will derive a recursive formula for Kurtosis. The Kutosis of a distribution consisting of samples $x_1 \dots x_N$ with mean μ and standard deviation σ is given by

$$K = \left(\frac{N \cdot (N+1)}{(N-1) \cdot (N-2) \cdot (N-3)} \sum_{i=1}^{N} \left(\frac{x_j - \mu}{\sigma}\right)^4\right) - \frac{3(N-1)^3}{(N-2) \cdot (N-3)}.$$
 (1)

Recursive calculation of Kurtosis

We fix notation as follows: Assuming that a distribution of prices p_j (j = 1, ..., n) occuring at a volume v_j is given (say at time t_n). At later time (say at time t_{n+1}) the distribution changed to

- one price p_{n+1} occuring at volume v_{n+1}
- the prices p_1, \ldots, p_n occurring at volumes $\frac{N-v_{n+1}}{N}v_1, \ldots, \frac{N-v_{n+1}}{N}v_n$, respectively

(where $N = \sum_{j=1}^{n} v_j = \sum_{j=1}^{n} \frac{N - v_{n+1}}{N} v_j + v_{n+1}$ is the total volume of shares floating). The Kurtosis of the distribution at time t_n is thus given by

$$K_n = \left(\frac{N \cdot (N+1)}{(N-1) \cdot (N-2) \cdot (N-3)} \sum_{i=1}^n v_i \left(\frac{p_i - \mu_n}{\sigma_n}\right)^4\right) - \frac{3(N-1)^3}{(N-2) \cdot (N-3)}$$

and the Kurtosis of the distribution at time t_{n+1} is given by

$$K_{n+1} = \left(\frac{N \cdot (N+1)}{(N-1) \cdot (N-2) \cdot (N-3)} \sum_{i=1}^{n+1} \tilde{v}_i \left(\frac{p_i - \mu_{n+1}}{\sigma_{n+1}}\right)^4\right) - \frac{3(N-1)^3}{(N-2) \cdot (N-3)},$$

where $\tilde{v}_i = \frac{N - v_{n+1}}{N} v_i$ for $i = 1, \dots, n$ and $\tilde{v}_{n+1} = v_{n+1}$.

To have an algorighm that allows calculation of Kurtosis in an recursive way (more presisely: to give Kurtosis as a function of recursivly defined values) let us define

$$\begin{aligned} q_n^{(1)} &= \sum_{i=1}^n v_i p_i, \qquad q_{n+1}^{(1)} = \frac{N - v_{n+1}}{N} q_n^{(1)} + v_{n+1} p_{n+1} \\ q_n^{(2)} &= \sum_{i=1}^n v_i p_i^2, \qquad q_{n+1}^{(2)} = \frac{N - v_{n+1}}{N} q_n^{(2)} + v_{n+1} p_{n+1}^2 \\ q_n^{(3)} &= \sum_{i=1}^n v_i p_i^3, \qquad q_{n+1}^{(3)} = \frac{N - v_{n+1}}{N} q_n^{(3)} + v_{n+1} p_{n+1}^3 \\ q_n^{(4)} &= \sum_{i=1}^n v_i p_i^4, \qquad q_{n+1}^{(4)} = \frac{N - v_{n+1}}{N} q_n^{(4)} + v_{n+1} p_{n+1}^4, \end{aligned}$$

i.e.

$$q_{n+1}^{(j)} := \frac{N - v_{n+1}}{N} q_n^{(j)} + v_{n+1} p_{n+1}^j = \left(\frac{N - v_{n+1}}{N} \sum_{i=1}^n v_i p_i^j\right) + v_{n+1} p_{n+1}^j.$$
(2)

With these definitions we have

$$\sum_{i=1}^{n} v_i \left(\frac{p_i - \mu_n}{\sigma_n}\right)^4 = \frac{1}{\sigma_n^4} \left(q_n^{(4)} - 4\mu_n q_n^{(3)} + 6\mu_n^2 q_n^{(2)} - 4\mu_n^3 q_n^{(1)} + \mu_n^4\right)$$

and

$$\sum_{i=1}^{n} \frac{N - v_{n+1}}{N} v_i \left(\frac{p_i - \mu_{n+1}}{\sigma_{n+1}}\right)^4 + v_{n+1} \left(\frac{p_{n+1} - \mu_{n+1}}{\sigma_{n+1}}\right)^4$$
$$= \frac{1}{\sigma_{n+1}^4} \left(q_{n+1}^{(4)} - 4\mu_{n+1}q_{n+1}^{(3)} + 6\mu_{n+1}^2q_{n+1}^{(2)} - 4\mu_{n+1}^3q_{n+1}^{(1)} + \mu_{n+1}^4\right)$$

and thus we find that the Kurtosis of the distribution at any time t_m is given by

$$K_m = \frac{N \cdot (N+1)}{(N-1) \cdot (N-2) \cdot (N-3)} k \left(\mu_m, \sigma_m, q_m^{(1)}, q_m^{(2)}, q_m^{(3)}, q_m^{(4)}\right) - \frac{3(N-1)^3}{(N-2) \cdot (N-3)}$$
(3)

where μ_m and σ_m are mean and standard deviation respectively (which could be calculated through a recursive formula)¹, $q_m^{(1)}, \ldots, q_m^{(4)}$ are defined by the recursion formulas above and

$$k\left(\mu,\sigma,q^{(1)},q^{(2)},q^{(3)},q^{(4)}\right) := \frac{1}{\sigma^4} \left(q^{(4)} - 4\mu q^{(3)} + 6\mu^2 q^{(2)} - 4\mu^3 q^{(1)} + \mu^4\right).$$
(4)

The initial values for the recusivly definied $q_m^{(j)}$ are given by $q_0^{(j)} = N \cdot p_0^j$.

¹In fact,
$$\mu_m = \frac{1}{N} q_m^{(1)}$$
 and $\sigma_m = \sqrt{\frac{1}{N} (q_m^{(2)} - 2\mu_m q_m^{(1)} + \mu_m^2)}$.

References

- [1] FRIES, CHRISTIAN P.: Elastic Moving Averages, Technical Analysis of Stocks & Commodities, June 2001.
- [2] http://www.ChristianFries.com/evwma/

Christian Fries email@christian-fries.de